沙牌碾壓混凝土拱壩溫度徐變應(yīng)力仿真計算
摘要:根據(jù)沙牌工程混凝土徐變試驗資料,按混凝土固化徐變理論,分解了沙牌碾壓混凝土徐變度函數(shù),得到了沙牌混凝土粘彈性相變形、粘性相變形的數(shù)學(xué)表達(dá)式,提出了混凝土的非線性徐變應(yīng)力計算方法;根據(jù)沙牌碾壓混凝土拱壩的材料參數(shù)與環(huán)境參數(shù),模擬了混凝土的施工過程,得到了沙牌碾壓混凝土拱壩的三維溫度場與三維應(yīng)力場的仿真計算成果;比較了混凝土線性徐變應(yīng)力理論與非線性徐變應(yīng)力理論下拱冠剖面不同高程、不同部位大壩混凝土應(yīng)力隨時間的變化過程,得出了一些有意義的結(jié)論,可供大壩溫控設(shè)計參考。
關(guān)鍵詞:大壩仿真分析 溫度應(yīng)力 混凝土徐變 不可恢復(fù)徐變
對不設(shè)橫縫或橫縫間距很大的碾壓混凝土拱壩,無論是在施工期,還是在運(yùn)行期,溫度荷載所占的比例都相當(dāng)高,且具有準(zhǔn)周期荷載的特性。在計算混凝土溫度徐變應(yīng)力時,應(yīng)該考慮混凝土不可恢復(fù)徐變對壩體應(yīng)力狀態(tài)的影響。但由于混凝土不可恢復(fù)徐變的試驗有一定的難度,一般的工程也不做,因此,從混凝土的已有徐變實驗資料中,分離出其中的不可恢復(fù)部分,就具有重要的工程意義。Bazant固化徐變理論公式[1]是從混凝土組成的微觀機(jī)制出發(fā),根據(jù)各組成材料的物理性質(zhì)推導(dǎo)出來的。具有概念明確、參數(shù)較少、方程線性等優(yōu)良性質(zhì)。文獻(xiàn)[2]通過對沙牌工程碾壓混凝土徐變資料的擬合計算表明:該公式擬合效果良好,擬合參數(shù)唯一,各參數(shù)的重要性處于同一水平。
不同齡期、不同持荷時間下,老化粘彈性相徐變Ca(t,τ)、非老化粘彈性相徐變Cna(t,τ)、粘性流動相徐變Cf(t,τ)(不可復(fù)徐變)在混凝土總徐變C(t,τ)中所占的比例,與工程試驗資料基本吻合,可以用于建立混凝土非線性徐變理論模型。這種考慮了不可復(fù)徐變在不同應(yīng)力水平下的非線性性質(zhì)的理論公式,對研究大壩混凝土溫度徐變應(yīng)力具有一定的優(yōu)勢。因為,分縫很少的大體積混凝土在溫升過程中的預(yù)壓應(yīng)力被混凝土后期溫降拉應(yīng)力逐漸消解直至反超的過程,呈現(xiàn)出一個典型的加載又卸載的徐變應(yīng)力問題,需要相應(yīng)的非線性徐變理論來計算。
1、沙牌碾壓混凝土徐變試驗資料及其分解
2、非線性徐變理論下拱壩溫度應(yīng)力三維有限元隱式解法
文獻(xiàn)[1]給出的非線性徐變理論的有限元列式及求解步驟是針對一維問題進(jìn)行的。對碾壓混凝土拱壩溫度徐變應(yīng)力的仿真計算,需要進(jìn)行三維有限元計算。因此,有必要建立混凝土固化徐變理論的三維有限元遞推求解列式。2.1 非線性徐變理論的控制方程 在Bazant固化徐變理論的應(yīng)力應(yīng)變控制方程中,任意時刻混凝土的總應(yīng)變向量ε應(yīng)滿足:ε=σ/E0+εc+ε0,εc=εv+εf(6)式中:εc為混凝土的徐變應(yīng)變向量;εv為混凝土粘彈性相徐變應(yīng)變向量;εf為混凝土粘性流動相徐變應(yīng)變向量;ε0為各種附加應(yīng)變向量,包括混凝土自生體積變形、混凝土溫度變化、混凝土微裂縫的擴(kuò)展等引起的應(yīng)變向量;
σ為混凝土的宏觀應(yīng)力向量,σ/E0為混凝土彈性相應(yīng)變向量。
3、兩種徐變理論計算結(jié)果比較
拱壩的受力特性極其復(fù)雜。本文研究的重點集中在混凝土的溫度徐變應(yīng)力。為簡化研究內(nèi)容,設(shè)計單位制定的蓄水計劃只作為溫度場的邊界條件。在計算拱壩應(yīng)力時,不考慮水荷載和自重荷載。選擇的壩體結(jié)構(gòu)形式最為簡單,即為既不設(shè)橫縫、也不設(shè)誘導(dǎo)縫的左右岸同時整體上升的壩體不分縫方式。鑒于篇章限制,此次研究的部位也局限在拱冠剖面上下游面拱向應(yīng)力,其高程在1762m、1798m、1850m,分別代表壩體下部、中部和頂部,位置見圖1~2.表3 拱冠剖面各高程上下游面單元編號1762高程1798高程1850高程 上游面 下游面上游面下游面上游面 下游面30243112 19880 197614554245780 圖1 沙牌碾壓混凝土拱壩上游面網(wǎng)格展開圖2 沙牌碾壓混凝土拱壩拱冠剖面網(wǎng)格,根據(jù)文獻(xiàn)[5]闡明的有限元-差分法原理計算壩體溫度場?;炷辆€性徐變理論下,按文獻(xiàn)[6]的隱式解法計算;混凝土非線性徐變理論下,按前文所述的格式計算。
一共截取了十個時間輸出步。在大壩完建后20d以前,時間步長為1d;在大壩完建20d后,時間步長為20d,總時間步為400.溫度輸出時間和應(yīng)力輸出的時間相同,分別為第160d、200d、240d、280d、320d、360d、490d、570d、730d、950d(以1998年10月15日為第1d)。處于大壩上部的單元,因混凝土澆筑較晚,從第五個時間輸出步上才有輸出值。為了使用同一時間坐標(biāo),其前四個時間輸出步上的值本來都為0,現(xiàn)取為第五個時間輸出步上的輸出值,以免在視覺上產(chǎn)生溫度或溫度應(yīng)力變化的錯覺。該部分混凝土是在1998年12月底完成的。在早期的溫升階段,兩種理論的計算結(jié)果基本相同。上下游面上都存儲了很大的預(yù)壓應(yīng)力,尤以下游面為甚。這與柱狀法澆筑的常規(guī)混凝土有本質(zhì)的區(qū)別。但經(jīng)歷了冬季的降溫過程后,兩種計算方法的差別在第600d以前逐漸加大; 對于處在壩體上部的兩個單元(單元號為45542和45780),線性徐變理論下的計算結(jié)果反而高于混凝土固化徐變理論的計算值,最大拉、壓應(yīng)力差值在(0.3~0.4)MPa之間??疾靾D7~圖8即發(fā)現(xiàn):這一部分混凝土是在1999年9月底澆筑的。該拱圈壩體很薄,混凝土散熱較快,約在30d左右就達(dá)到了最高溫度,而壩體下部混凝土一般要經(jīng)過60d左右的升溫后,才開始下降。所以,圖7~圖8上反映出上下游表面混凝土從澆筑之日起,就處于降溫階段,而且速度較快,幅度較大。線性徐變理論因沒有考慮混凝土的流變性質(zhì),拉應(yīng)力計算值較大,并在今后很長時間內(nèi),比非線性徐變理論計算的結(jié)果保持著(0.3~0.4)MPa拉應(yīng)力的正差值。這從另一個角度也說明在混凝土應(yīng)力水平不高的情況下,兩種徐變理論對老齡期的混凝土的溫度徐變應(yīng)力的計算基本上是相近的。4 結(jié) 語碾壓混凝土拱壩的溫度徐變應(yīng)力問題是我國在高拱壩中推廣碾壓混凝土材料筑壩技術(shù)的關(guān)鍵問題之一。
從以前的“松弛系數(shù)法”或“等效模量法”到目前的“初應(yīng)變仿真計算法”,涉及很多理論上的困難。本文引入Bazant混凝土固化徐變理論,推導(dǎo)了非線性徐變理論的三維有限元列式,并將之用于沙牌碾壓混凝土的仿真計算之中,結(jié)果發(fā)現(xiàn):線性徐變理論與非線性徐變理論的計算結(jié)果存在著一定的差別。混凝土首先正向加載——即混凝土首先受壓然后受拉時,線性徐變理論的拉應(yīng)力計算值與非線性徐變理論的計算結(jié)果最大有0.6MPa的負(fù)差別,使大壩偏于危險;混凝土首先反向加載——即混凝土首先受拉然后受壓時,線性徐變理論計算的拉應(yīng)力結(jié)果與非線性徐變理論的計算結(jié)果最大有0.4MPa的正差別,使大壩偏于安全。
其中的關(guān)鍵在于:線性徐變理論沒有考慮混凝土的不可以恢復(fù)徐變在不同應(yīng)力水平下的非線性性質(zhì)。
更多內(nèi)容訪問>> 注冊土木工程師(巖土)考試頻道 注冊土木工程師(巖土)考試論壇 巖土工程師課程試聽
·2010年注冊土木工程師(巖土)考試輔導(dǎo)招生簡章
·巖土工程師輔導(dǎo)現(xiàn)在報名任意專業(yè)知識贈送專業(yè)知識習(xí)題班
·老師輔導(dǎo)每天24小時不限時間隨時反復(fù)學(xué)習(xí)……
最新資訊
- 2023年注冊巖土工程師基礎(chǔ)考試資料2024-09-20
- 2024年度全國注冊土木工程師(巖土)專業(yè)考試所使用的標(biāo)準(zhǔn)和法律法規(guī)2024-08-12
- 注冊巖土工程師備考要趁早 雙11好課限時優(yōu)惠!直播間更有返現(xiàn)抽獎~2023-10-31
- 雙11預(yù)熱火熱進(jìn)行中!超值好課助力你巖土工程師備考2023-10-31
- 2023年注冊巖土工程師基礎(chǔ)考試資料2023-09-22
- 2023年注冊巖土工程師基礎(chǔ)考試備考資料2023-09-18
- 2023年巖土工程師基礎(chǔ)考試備考資料2023-09-15
- 2022注冊巖土工程師基礎(chǔ)考試備考資料2022-10-18
- 2022年巖土工程師考試用書推薦2022-05-23
- 2022年注冊巖土工程師公共基礎(chǔ)教材2022-05-20